RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. FIFTH SEMESTER EXAMINATION, MARCH 2021 THIRD YEAR [BATCH 2018-21] PHYSICS (HONOURS)

 Date : 20/03/2021
 PHYSICS (HONOURS)

 Time : 11 am - 1 pm
 Paper : VI [Gr. B]
 Full Marks : 50

An	swer <u>any five</u> questions:	$[5 \times 10]$
1.	a) Find the number of atoms per unit cell of SC, FCC and BCC types of crystal.	[5]
	b) Metallic iron from BCC to FCC structure at 910°C. At this temperature the atomic radii of the in the two structures are 1.258Å and 1.292Å respectively. Calculate the change in volu available per atom.	
2.	a) Find the dielectric constant of a solid in which local field has the form $\vec{E}_{eff} = \vec{E} + \frac{\vec{P}}{3_{e0}}$, assuming	, N
	atoms per unit volume each of polarizability α .	[5]
	b) Show that the velocity of an electron moving in a periodic potential in one dimension vanishes the zone boundaries.	s at [3]
	c) For a BCC lattice of identical atom with a lattice constant of 5 Å. Calculate the maximum packs fraction and the radius of the atoms treated as hard spheres with the nearest neighbours touching	_
3.	a) Estimate the Debye temperature of gold if its atomic weight is 197, the density is 1.9×10^4 kg/and the velocity of sound in its is 2100 m/s.	/m ³ [5]
	b) Find the relation between electron concentration and wavelength associated with an electron having an energy equal to average kinetic energy of an electron.	ron [5]
4.	a) Find the relation between the Miller indices(hkl)of a crystal face and direction cosines m_a , m_b a m_c of the normal of this face with respect to the \vec{a} , \vec{b} and \vec{c} axes.	and [5]
	b) The mobility of electron and holes in a sample of intrinsic germanium at 300K is 0.39 a $0.19m^2V^{-1}s^{-1}$ respectively. Find the forbidden energy band of germanium of the conductivity this sample is $2.32\Omega^{-1}m^{-1}$.	
5.	a) Find the expression for density of vibrational mode of a linear monatomic chain and show that low temperature the heat capacity varies linearly with temperature.	t at [5]
	b) The length of primitive translation vectors of a three dimensional lattice $a = 1 \text{ Å}$, $b = 3 \text{ Å}$ and $c = 2 \text{ Å}$. If angle between a and b is 150° find primitive translational vectors (a^*, b^*) and $c = 2 \text{ Å}$ and $c = 2 \text{ Å}$.	c = the [5]
6.	a) Find the lowest energy band using Kronig-Penny model for P<<1.	[5]
	b) The variation of space charge density of a pn junction with in $-W/2$ to $W/2$ is given $\rho(x) = eCx$, where C is constant and W width of the space charge region. Find the cont potential of this junction.	•
7.	a) Write a short note on the Hysteresis loop.	[6]
	b) What is the critical temperature and Meissner effect?	[4]
8.	a) What is the difference between Diamagnetic, Paramagnetic, and Ferromagnetic materials?	[4]

b) Using the Schrodinger	equation	under	an	external	magnetic	field	$\vec{B} = (0, 0, B_0)$ explain the	
Diamagnetic properties of a material.								

- × -

[6]

[2]